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functional joint models for
longitudinal and time-to-event data:
An application to Alzheimer’s disease
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Abstract

In the study of Alzheimer’s disease, researchers often collect repeated measurements of clinical variables, event history,

and functional data. If the health measurements deteriorate rapidly, patients may reach a level of cognitive impairment

and are diagnosed as having dementia. An accurate prediction of the time to dementia based on the information collected

is helpful for physicians to monitor patients’ disease progression and to make early informed medical decisions. In this

article, we first propose a functional joint model to account for functional predictors in both longitudinal and survival

submodels in the joint modeling framework. We then develop a Bayesian approach for parameter estimation and a

dynamic prediction framework for predicting the subjects’ future outcome trajectories and risk of dementia, based on

their scalar and functional measurements. The proposed Bayesian functional joint model provides a flexible framework to

incorporate many features both in joint modeling of longitudinal and survival data and in functional data analysis.

Our proposed model is evaluated by a simulation study and is applied to the motivating Alzheimer’s Disease

Neuroimaging Initiative study.
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1 Introduction

Joint modeling of longitudinal and survival data is a popular framework to appropriately analyze datasets with
repeated measurements and time-to-event outcomes.1,2 The principle is to define two submodels (a mixed effects
submodel for the longitudinal outcome and a Cox submodel for the survival outcome) and link them using a
common latent structure. This modeling approach analyzes the two types of outcomes simultaneously and is able
to reduce the bias of parameter estimates and improve the efficiency of statistical inference. A novel use of joint
models, which has gained increasing interest in recent years, is to obtain dynamic personalized prediction of
future longitudinal outcome trajectories and risks of survival events at any time, given the subject-specific
outcome profiles up to the time of prediction. A key feature of the dynamic prediction frameworks is that the
predictive measures can be dynamically updated as additional longitudinal measurements become available for
the target subjects, providing instantaneous risk assessment, e.g. Rizopoulos3 and Taylor et al.4 The practical
impact of these dynamic prediction tools can be dramatic for the neurodegenerative diseases, because they provide
unique insight and valuable guidance for clinical decision making on treatment selection, patient prognosis, and
counseling to facilitate a targeted treatment. However, current state-of-the-art joint models do not incorporate
functional data, which are increasingly collected in public health and medical studies, to better understand many
complex diseases.
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Functional data consist of a sample of functions that provide information about curves, surfaces, or anything
else varying over a continuum. These functions are usually defined on a one-dimensional time domain, such as
growth curve data, heart rate monitor data, and electroencephalogram (EEG) data. A growing volume of
functional data is also collected on higher dimensional domains such as magnetic resonance imaging (MRI),
positron emission tomography (PET), and functional magnetic resonance imaging (fMRI). Functional data are
closely related to multivariate data because functions are highly multivariate objects.5 The main distinction
between functional data and multivariate data are the natural ordering (in time or space) within a function.
The high dimensionality and the complex structure in functional data pose challenges in both statistical theory
and computation.6,7

Functional regression, especially functional predictor regression, is an active area of functional data analysis in
the past decade. Although there is a rich literature in functional predictor regression to model the relationship
between a scalar outcome and functional predictors,8–13 most of the work focuses on cross-sectional data.
Goldsmith et al.14 proposed a penalized functional regression model to handle longitudinal measurements in
both the response variable and functional predictors by incorporating scalar random effects. Gertheiss et al.15

improved the longitudinal model to allow for different effects of subject-specific curves. More recently, Gellar
et al.16 extended the Cox proportional hazards model to incorporate functional predictors and estimated the
parameters via penalized partial likelihood approach. Lee et al.17 developed a Bayesian functional Cox
regression model with both functional and scalar covariates, but used different regularization approaches.
However, these works focus on the statistical inference instead of prediction. To the best of our knowledge,
there are no studies of dynamic prediction based on functional regression modeling that simultaneously analyze
the longitudinal measurements and time-to-event data. By using functional data as predictors in the dynamic
prediction framework using a joint model, the rich information in functional data may increase the model’s power
of predicting disease progression in clinical practice.

In this article, we propose a novel joint model that incorporates the growing volume of functional data in the
longitudinal-survival setting. Specifically, we develop a functional joint model (FJM), where outcomes consist of a
longitudinal measure and a time-to-event variable, and the exposure variables include both scalar predictors and
functional predictors. The key idea of characterizing FJM is to treat each functional predictor as a single
structured object rather than a collection of data points,7 in contrast to the scalar predictor. Thus, the FJM
needs to handle the complex structure within each function and the association between different data types. In
addition, the coefficient for a functional predictor in the FJM is also a function, which increases the difficulty for
estimation and inference. We estimate the coefficient functions for the functional predictors using penalized spline
approach. We develop a Bayesian approach for statistical inference of our FJM and a dynamic prediction
framework for the predictions of target patients’ future outcome trajectories and risks of event. These
important predictive measures can provide valuable information to discover and validate prognostic
biomarkers, which may advance the design of future clinical trials.

The rest of the article is organized as follows. In Section 2, we describe the motivating Alzheimer’s Disease
Neuroimaging Initiative (ADNI) study and the data structure. In Section 3, we discuss the joint longitudinal-
survival model with functional predictors, Bayesian inference procedure, and dynamic prediction framework.
In Section 4, we apply the proposed method to the ADNI study. In Section 5, we conduct a simulation study
to examine the performance of the proposed Bayesian FJM. Concluding remarks and discussion are presented in
Section 6.

2 A motivating clinical study

The methodology development is motivated by the ADNI study. The primary goal of the study is to test whether
serial MRI, positron emission tomography (PET), cerebrospinal fluid (CSF) markers, and neuropsychological
assessments can be combined to measure the progression of Alzheimer’s disease (AD). The phase 1 of the ADNI
study (ADNI-1) recruited more than 800 adults, of which about 200 cognitively normal individuals, 400 mild
cognitive impairment (MCI) patients, and 200 early AD patients. Participants were reassessed at 6, 12, 18, 24, and
36 months, and additional follow-ups were conducted annually as part of ADNI-2. At each visit, various
neuropsychological assessments, brain image, and clinical measures were collected. Detailed information about
the ADNI study procedures, including participant inclusion and exclusion criteria and complete study protocol
can be found at http://www.adni-info.org.

Because MCI is commonly considered as a transitional stage between normal cognition and Alzheimer’s
disease, numerous recent studies assess various clinical markers and neuroimaging techniques to predict AD
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diagnosis among MCI patients.18 To this end, our analysis focuses on 355 MCI patients in the ADNI-1 study
without missing data in covariates of interests, and we consider AD diagnosis among MCI patients to be the
survival event of interest. In the ADNI-1 study, the 355 MCI patients were followed up for a mean of 3.2 years
(SD 2.6; range 0.4–9.3) before AD diagnosis or censoring. Among them, 180 patients were diagnosed with AD
(survival event) and 175 had stable MCI over a mean follow-up period of 2.3 years and 4.2 years, respectively.

Moreover, the longitudinal Alzheimer Disease Assessment Scale-Cognitive (ADAS-Cog) score was reported to
be the strongest predictor of time from MCI-to-AD.19 It is an important clinical measure for cognitive functions
and it manifests disease status. It is usually reported as a composite score of the 11 items (ADAS-Cog 11), with a
total score of 70 and higher score indicating poor cognitive function. Figure 1 displays the lowess smoothing
curve20 of ADAS-Cog 11 scores over time for the MCI patients, with follow-up time less than 3 years
(203 patients), 3–6 years (82 patients), and more than 3 years (70 patients), in addition to 95% pointwise
confidence intervals. Figure 1 suggests that the ADAS-Cog 11 scores of patients in all three groups
increase with time, which indicates the deteriorating of cognitive functions. The patients with shorter follow-up
time tend to have higher ADAS-Cog 11 scores, indicating that patients with more severe cognitive impairment
were more likely to progress to AD or censoring. This phenomenon manifests strong correlation between the
longitudinal ADAS-Cog 11 values and the time to AD diagnosis, and is often referred to as ‘‘dependent censoring’’
or ‘‘informative censoring’’ in the literature of joint modeling.21 However, many studies22,23 designed to explore
the association between longitudinal measures and disease progression of MCI patients analyzed the two processes
separately. Their approaches failed to account for such informative censoring and resulted into biased inference.

Furthermore, the degree of atrophy within the medial temporal lobe structures, especially within the
hippocampus, was reported to be associated with the AD progression.24 Most of the current analysis was
based on volumes of brain regions.24–26 For example, AD patients and MCI patients have been shown to have
27% and 11% smaller hippocampal volumes, respectively, as compared with normal age-matched elderly.24

However, some research27,28 demonstrated that the surface-based morphology analysis offers more advantages
because this method studies patterns of subregion atrophy and produce detailed pointwise correlation between
atrophy and cognitive functions. In these surface-based analyses, the hippocampus is modeled as a surface model
which is a mesh of triangles. Each triangle is known as a face and the place where the corners of the triangles meet
is called a vertex. The coordinate of each vertex is determined during image processing and allows one to compute
many morphometric measures based on it. In this article, we propose a Bayesian personalized prediction model
based on the FJM of longitudinal ADAS-Cog 11 score and the time to AD diagnosis, accounting for the clinical
covariates and MRI measures. We include as a functional predictor the hippocampal radial distance (HRD) of

Figure 1. Smoothing curves of variable ADAS-Cog 11 over time for MCI patients with follow-up time less than 3 years (203 patients,

solid line), 3–6 years (82 patients, dotted line), and more than 6 years (70 patients, dashed line). The shaded regions are 95% pointwise

confidence intervals. ADAS-Cog: Alzheimer Disease Assessment Scale-Cognitive; MCI: mild cognitive impairment.
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vertices on bilateral hippocampal surfaces. The HRD measures the distance from the medial core to each surface
vertex and represents the hippocampal thickness. The HRD is calculated based on the surface model and the
image processing procedure is detailed in the Web Supplement.

3 Methods

3.1 FJM framework

For each subject i ði ¼ 1, . . . , I Þ at visit j ð j ¼ 1, . . . , JiÞ, we observe data f yij, xij, g
ðxÞ
i ðsÞg, where yij ¼ yiðtijÞ is a

scalar outcome recorded at time tij from the study onset. Vector xij is a p-dimensional covariate vector. Function
g
ðxÞ
i ðsÞ is a time-invariant functional predictor defined over a 1D domain s 2 ½0,Smax� ¼ S. The domain of the

functional predictor S is not the same as the time domain t over which the survival event is followed. For the ease
of illustration, we only incorporate a single time-invariant functional predictor, such as the baseline MRI measure,
in both the longitudinal and survival submodels, while the FJM can readily accommodate multiple functional
predictors. We use superscript (x) and (w) to denote the functional predictors in the longitudinal and survival
submodels, respectively. The longitudinal submodel is

yiðtijÞ ¼ miðtijÞ þ "ij, miðtijÞ ¼ �0 þ x>ij bþ

Z
S

g
ðxÞ
i ðsÞB

ðxÞðsÞdsþ z>ij ui ð1Þ

where miðtijÞ is the unobserved true value of the longitudinal outcome at time tij, �0 is the intercept, and b is the
regression coefficient vector. Coefficient function BðxÞðsÞ (defined on the same domain as g

ðxÞ
i ðsÞ) determines a

pointwise association between g
ðxÞ
i ðsÞ and yiðtijÞ. Vector zij is a q-dimensional covariates corresponding to

random effects ui, which is assumed to have ui � Nð0,�uÞ to account for the within-subject correlation.
The measurement error "ij � Nð0, �2" Þ is independent from ui. To allow flexibility and smoothness in modeling
the effects of some covariates, smooth functions using splines can also be included in model (1).

The event history is recorded for each subject i with observed event time Ti ¼ minðT�i ,CiÞ and the event
indicator �i ¼ IðT�i � CiÞ, where T�i and Ci are the true event time and censoring time, respectively.
The survival submodel is

hiðtÞ ¼ h0ðtÞ exp w>i � þ

Z
S

g
ðwÞ
i ðsÞB

ðwÞðsÞdsþ �miðtÞ

� �
ð2Þ

where h0ðtÞ is the baseline hazard function, and wi is a vector of time-independent covariates with regression coefficient

vector �. Functional predictor gðwÞi ðsÞ may be the same or different from its counterpart g
ðxÞ
i ðsÞ in model (1). Functional

log hazard ratio BðwÞðsÞ measures the overall contribution of g
ðwÞ
i ðsÞ towards the event hazard. The association

parameter � quantifies the strength of correlation between the unobserved true longitudinal function miðtÞ and the
event hazard at the same time point t. Models (1) and (2) consist of the FJM framework.

To build the functional regression model, we adopt a penalized approach to incorporate functional components

into functional predictor regression model.14,16 We first express the time-invariant functional predictor g
ðxÞ
i ðsÞ in

model (1) using the Karhunen–Loève decomposition. Let �ðxÞðsÞ be the mean of g
ðxÞ
i ðsÞ and

�ðxÞðs, s0Þ ¼ covfg
ðxÞ
i ðsÞ, g

ðxÞ
i ðs

0Þg be the covariance function between two locations (s and s0) of the functional

predictor. The spectral decomposition of the covariance function is given by �ðxÞðs, s0Þ ¼
P1

l¼1 l
ðxÞ
l �
ðxÞ
l ðsÞ�

ðxÞ
l ðs

0Þ,

where lðxÞ1 � lðxÞ2 � � � � � 0 are non-increasing eigenvalues and �ðxÞl ðsÞ’s are the corresponding orthonormal

eigenfunctions. The Karhunen–Loève expansion of g
ðxÞ
i ðsÞ is g

ðxÞ
i ðsÞ ¼ �

ðxÞðsÞ þ
P1

l¼1 	
ðxÞ
il �
ðxÞ
l ðsÞ, where the

functional principal component (FPC) scores 	ðxÞil ¼
R
S fg
ðxÞ
i ðsÞ � �

ðxÞðsÞg�ðxÞl ðsÞds are uncorrelated random

variables with mean zero and variance lðxÞl . In practice, we adopt a truncated approximation for g
ðxÞ
i ðsÞ given by

g
ðxÞ
i ðsÞ 	 �

ðxÞðsÞ þ
PKx

l¼1 	
ðxÞ
il �
ðxÞ
l ðsÞ.

In the second step, we express coefficient function BðxÞðsÞ in model (1) in term of a cubic B-spline basis functions

wðxÞðsÞ ¼ ½ ðxÞ1 ðsÞ, . . . , ðxÞKB
ðsÞ�>, so that BðxÞðsÞ ¼

PKB

l¼1 B
ðxÞ
l  

ðxÞ
l ðsÞ. The basis function wðsÞðxÞ is evaluated over the

domain S on which function g
ðxÞ
i ðsÞ is observed. The coefficients B

ðxÞ
l are unknown parameters that need to be

estimated. We denote the vector of FPC scores as n
ðxÞ
i ¼ ½	

ðxÞ
i1 , . . . , 	ðxÞiKx

�
>, the vector of eigenfunctions as
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�ðxÞðsÞ ¼ ½�ðxÞ1 ðsÞ, . . . ,�ðxÞKx
ðsÞ�>, and the vector of coefficients as BðxÞ ¼ ½B

ðxÞ
1 , . . . ,B

ðxÞ
KB
�
>. Then we haveZ

S

g
ðxÞ
i ðsÞB

ðxÞðsÞds 	

Z
S

�ðxÞðsÞBðxÞðsÞdsþ

Z
S

n
ðxÞ
i

� �>
�ðxÞðsÞwðxÞðsÞ>BðxÞds

¼

Z
S

�ðxÞðsÞBðxÞðsÞdsþ n
ðxÞ
i

� �>Z
S

�ðxÞðsÞwðxÞðsÞ>dsBðxÞ

¼

Z
S

�ðxÞðsÞBðxÞðsÞdsþ n
ðxÞ
i

� �>
J
ðxÞ
�, B

ðxÞ

Note that J
ðxÞ
�, is a Kx 
 KB matrix with the (k,l)th entry equal to

R
S �
ðxÞ
k ðsÞ 

ðxÞ
l ðsÞ

>ds. The integrals are computed

by numeric integration and J
ðxÞ
�, is a fixed term in the model. The number of components Kx can be determined

using the proportion of explained variance (PEV). Specifically, Kx may be chosen as the minimum number of FPCs

such that
PKx

l¼1 l̂
ðxÞ
l =

P1
l¼1 l̂

ðxÞ
l � L, where L is a pre-specified PEV, e.g. L ¼ 80%, 90%, or 95%. However, the

selected number Kx can explain the majority of the variability in the functional predictor, but it may not
adequately represent the coefficient function. Thus, in this article, we refer to Ruppert29 and choose Kx and KB

sufficient large (e.g. 20) to capture the complexity in both functional predictors and coefficient functions, with the
identifiability constrain Kx � KB.

Similarly, the functional predictor gðwÞðsÞ in model (2) can be expressed as g
ðwÞ
i ðsÞ 	 �

ðwÞðsÞ þ
PKw

l¼1 	
ðwÞ
il �

ðwÞ
l ðsÞ and

the coefficient function BðwÞðsÞ ¼
PKB

l¼1 B
ðwÞ
l  ðwÞl ðsÞ, where  

ðwÞ
l ðsÞ’s are B-spline basis functions defined on the same

domain of gðwÞðsÞ. Thus,
R
S g
ðwÞðsÞBðwÞðsÞds 	

R
S �
ðwÞðsÞBðwÞðsÞdsþ ðn

ðwÞ
i Þ
>J
ðwÞ
�, B

ðwÞ, with �ðwÞðsÞ, 	ðwÞil , �ðwÞl ðsÞ, J
ðwÞ
�, ,

and BðwÞ have the same meanings as �ðxÞðsÞ, 	ðxÞil , �ðxÞl ðsÞ, J
ðxÞ
�, , and BðxÞ, respectively. Thus, the FJM is rewritten as

yiðtÞ ¼ miðtÞ þ "ij, where miðtÞ ¼ �
0
0 þ x>ij bþ ðn

ðxÞ
i Þ
>J
ðxÞ
�, B

ðxÞ þ z>ij ui ð3Þ

and hiðtÞ ¼ h�0ðtÞ exp w>i � þ n
ðwÞ
i

� �>
J
ðwÞ
�, B

ðwÞ þ �miðtÞ

� �
ð4Þ

where �00 ¼ �0 þ
R
S �
ðxÞðsÞBðxÞðsÞds and h�0ðtÞ ¼ h0ðtÞ expf

R
S �
ðwÞðsÞBðwÞðsÞdsg. For notational ease and without

ambiguity, we replace the approximation sign (	) by the equal sign. Note that models (3) and (4) are similar to
a linear mixed submodel for the longitudinal scalar response variable and a Cox submodel for the survival
outcome, respectively, in a standard joint model framework.2 And FPC scores n

ðxÞ
i and n

ðwÞ
i can be treated as

scalar covariates. Similar to mixed models, our FJM can readily handle unbalanced data in the longitudinal
measurement of yiðtÞ.

Let h ¼ ½�00, b
>, ðBðxÞÞ>, vechð�uÞ

>, �>, ðBðwÞÞ>,�, �2" , h
>
h�
0
�
> be the parameter vector, where vechð�uÞ is the vector

being formed by vectorizing the lower triangular part of covariance matrix �u, vector hh�
0
denotes the parameters in

the baseline hazard function h�0ð�Þ. The conditional likelihood from the longitudinal data yi ¼ ½ yi1, . . . , yiJi �
> is

pðyijh, uiÞ ¼ ð2
�
2
" Þ
�Ji=2 exp �

1

2�2"

XJi
j¼1

yij � �00 þ x>ij bþ n
ðxÞ
i

� �>
J
ðxÞ
�, B

ðxÞ þ z>ij ui

� �� 	2( )

and the density function of the random effects ui is pðuijhÞ ¼ ð2
Þ
�q=2
j�uj

�1=2 expð� 1
2 u
>
i ��1u uiÞ, where q is the

dimension of the covariance matrix �u. The conditional likelihood from the survival data are

pðTi, �i, jh, uiÞ ¼ hiðTijh, uiÞ
�iSiðTijh, uiÞ ¼ hiðTijh, uiÞ

�i exp �

Z Ti

0

hiðtjh, uiÞdt

� 	

where hiðTijh, uiÞ ¼ h�0ðTiÞ expfw
>
i � þ ðn

ðwÞ
i Þ
>J
ðwÞ
�, B

ðwÞ þ �miðTiÞg, and function h�0ð�Þ can be approximated by a
piecewise-constant function or a B-spline function.

Under the local independence assumption (i.e. conditional on the random effect vector ui, all components in yi
and Ti are independent), the joint likelihood function is

LðhÞ ¼
YI
i¼1

pðyi,Ti, �ijhÞ ¼
YI
i¼1

Z
pðyijh, uiÞ pðTi, �i, jh, uiÞ pðuijhÞdui ð5Þ
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To prevent overfitting, we adopt penalization technique to estimate spline coefficients BðxÞ and BðwÞ and to
introduce smoothness in the resulting coefficient function. The penalized log-likelihood is formed by subtracting
the penalty terms from the log-likelihood,

l ðhÞ ¼ logLðhÞ �
1

�2
BðxÞ

ðBðxÞÞ>BðxÞ �
1

�2
BðwÞ

ðBðwÞÞ>BðwÞ ð6Þ

where �2
BðxÞ

and �2
BðwÞ

are smoothing parameters. Instead of fitting the model by direct maximization of the penalized
likelihood, we adopt a Bayesian penalization approach detailed in Section 3.2.

3.2 Bayesian inference

In practice, the functional predictors such as g
ðxÞ
i ðsÞ are measured over finite grids in domain S and often with

measurement error, i.e. the observed functional predictor g
ðx0Þ
i ðsÞ ¼ g

ðxÞ
i ðsÞ þ �iðsÞ, where measurement error

�iðsÞ � Nð0, �2� Þ is a white noise process. The mean function �ðxÞðsÞ is estimated by �̂ðxÞðsÞ ¼
PI

i¼1 g
ðx0Þ
i ðsÞ=I, and

the empirical covariance function is estimated by �̂ðxÞðs, s0Þ ¼
PI

i¼1 fg
ðx0Þ
i ðsÞ � �̂

ðxÞðsÞgfg
ðx0Þ
i ðs

0Þ � �̂ðxÞðs0Þg=ðI� 1Þ. We

apply kernel smoothing to the off-diagonal elements of �̂xðs, s
0Þ to remove the effects from measurement

errors.30,31 Then the estimated eigenvalues l̂ðxÞl and the corresponding estimated eigenfunctions �̂ðxÞl ðsÞ, where
l ¼ 1, . . . ,Smax, are calculated based on the decomposition of the smoothed covariance function. Finally, the
estimated FPC scores for each subject are calculated as 	̂ðxÞil ¼

R
S fg
ðx0Þ
i ðsÞ � �̂

ðxÞðsÞg�̂ðxÞl ðsÞds, and the integral can
be approximated by the Riemann sum. We choose the first Kx estimated eigenfunctions and FPC scores,
and denote them as b�ðxÞðsÞ ¼ ½�̂ðxÞ1 ðsÞ, . . . , �̂ðxÞKx

ðsÞ�> and bnðxÞi ¼ ½	̂ðxÞi1 , . . . , 	̂ðxÞiKx
�
>, respectively. In a similar fashion,

functional predictor g
ðwÞ
i ðsÞ can be obtained and the components b�ðwÞðsÞ andbnðwÞi can be defined.

For model fitting, we propose a Bayesian approach based on Markov Chain Monte Carlo (MCMC) posterior
simulations, which provides a flexible way for statistical inference. In Bayesian framework, unknown parameters
are considered as random variables with appropriate prior distributions. We use vague prior distributions on all
elements in parameter vector h. Specifically, the prior distributions of parameters b, c, a are N(0, 100), and Inverse-
Gamma (0.01, 0.01) for all variance parameters. We impose smoothness on coefficient function estimates through

the prior specification on BðxÞ and BðwÞ. We replace the penalty terms in the penalized likelihood (6) by their

stochastic analogues, and assume a random walk prior distribution on the B
ðxÞ
l and B

ðwÞ
l , for l ¼ 1, . . . ,KB.

32

Specifically, we use a first-order random prior distribution for B
ðxÞ
lþ1 � NðB

ðxÞ
lþ1, �

2
BðxÞ
Þ, for l ¼ 1, . . . ,KB � 1, where

B
ðxÞ
1 is treated as a fixed unknown parameter. Then the variance component �2

BðxÞ
is assigned Inverse-Gamma (0.01,

0.01) as prior distribution. A similar approach is applied to B
ðwÞ
l . We have investigated other selections of prior

distributions and hyper parameters and have obtained very similar results.

The model fitting is performed in Stan by specifying the full likelihood function and the prior distributions
of all unknown parameters. Stan adopts a No-U-Turn sampler,33 which offers faster convergence and
parameter space exploration compared with other MCMC algorithms such as Gibbs sampler. We use the
history plots and view the absence of apparent trend in the plot as evidence of convergence. In addition, we

use the Gelman–Rubin diagnostic to ensure the scale reduction R̂ of all parameters are smaller than 1.1.34

After fitting the model to the training dataset (the dataset used to build the model) using Bayesian
approaches, we obtain D (e.g. D¼ 2000 after burn-in) samples for the parameter vector denoted by

fhðd Þ, d ¼ 1, . . . ,Dg. All estimations can then be obtained by calculating simple summaries (e.g. mean,

variance, quantiles) of the posterior distributions of D samples fhðd Þ, d ¼ 1, . . . ,Dg. Based on the estimated

coefficient vector bBðxÞ (posterior mean), the estimated coefficient function is calculated by

B̂ðxÞðsÞ ¼ ðbBðxÞÞ>wðxÞðsÞ. The Bayesian approach allows for the easy construction of posterior credible

intervals for the coefficient function BðxÞðsÞ as ½q̂B,0:025ðsÞ, q̂B,0:975ðsÞ�, where q̂B,pðsÞ is the p-quartile of the

MCMC samples ½BðxÞðsÞ�ðd Þ ¼ ½ðBðxÞÞðd Þ�>wðxÞðsÞ, d ¼ 1, . . . ,D. Similarly, the estimated coefficient function

B̂ðwÞðsÞ and its credible interval can be obtained. To facilitate easy reading and implementation of the
proposed FJM, a Stan code has been posted in the Web Supplement.
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3.3 Dynamic prediction framework

We next illustrate the dynamic prediction framework based on the proposed Bayesian FJM. Given a new subject

N’s outcome histories yftgN ¼ fyNðtNjÞ; 0 � tNj � tg and covariates XftgN ¼ fxNðtNjÞ, g
ðxÞ
N ðsÞ,wN, g

ðwÞ
N ðsÞ; 0 � tNj � tg up

to time t, and �N ¼ 0 (no event), we want to predict the personalized longitudinal outcome yNðt
0Þ at a future time

point t04 t (e.g. t0 ¼ tþ�tÞ, and the conditional probability of event-free or survival at time t0, denoted by


Nðt
0jtÞ ¼ PðT�N � t0jT�N4 t, yftgN ,XftgN Þ. The key step for prediction is to obtain samples for subject N’s random

effect vector uN from its posterior distribution pðuNjT
�
N 4 t, yftgN , hÞ. Conditional on the dth posterior sample

hðd Þ, d ¼ 1, . . . ,D, we draw the dth sample of the random effect vector uN from its posterior distribution

p uNjT
�
N 4 t, yftgN , hðd Þ

� �
¼

p yftgN ,T�N 4 t, uNjh
ðd Þ

� �
p yftgN ,T�N 4 tjhðd Þ
� � / p yftgN ,T�N 4 t, uNjh

ðd Þ
� �

¼ p yftgN jh
ðd Þ, uN

� �
p T�N 4 tjhðd Þ, uN

 �

p uNjh
ðd Þ


 �
where pðyftgN jh

ðd Þ, uNÞ is the conditional probability of longitudinal data from model (3), pðT�N 4 tjhðd Þ, uNÞ is the
survival probability from model (4), and pðuNjh

ðd ÞÞ is the probability of random effect. For each of
hðd Þ, d ¼ 1, . . . ,D, we use adaptive rejection Metropolis sampling (ARMS)35 to draw one sample of random
effect vector uN. This process is repeated for the D saved values of h, so that D samples of random effect
vector uN are obtained. The predictions can be calculated by plugging in the samples of the parameter vector
and random effect vector fhðd Þ, u

ðd Þ
N , d ¼ 1, . . . ,Dg into the proposed models. For example, based on model (3), the

expected values of the longitudinal outcome for subject N at time t0 is

Ê yNðt
0ÞjT�N 4 t, yftgN ,XftgN

n o
¼

Z
E yNðt

0ÞjT�N 4 t, yftgN ,XftgN , uN

n o
p uNjT

�
N 4 t, yftgN ,XftgN

� �
duN

	
1

D

XD
d¼1

E yNðt
0ÞjT�N4 t, yftgN ,XftgN , u

ðd Þ
N

n o
¼

1

D

XD
d¼1

m
ðd Þ
N ðt

0Þ

where the integration with respect to uN in the first equality is approximated using Monte Carlo method. The
baseline functional predictor such as g

ðxÞ
N ðsÞ can be converted to g

ðxÞ
N ðsÞ 	 �̂

ðxÞðsÞ þ
PKx

l¼1 	̂
ðxÞ
Nl �̂
ðxÞ
l ðsÞ, where

	̂ðxÞNl ¼
R
S fg
ðxÞ
N ðsÞ � �̂

ðxÞðsÞg�̂ðxÞl ðsÞds. Similarly, based on model (4), the conditional probability of event-free at
time t0 is


̂Nðt
0jtÞ ¼

Z
PðT�N � t0jT�N 4 t, yftgN ,XftgN , uNÞ pðuNjT

�
N 4 t, yftgN ,XftgN ÞduN

	
1

D

XD
d¼1

P T�N � t0jT�N 4 t, yftgN ,XftgN , u
ðd Þ
N

� �
¼

1

D

XD
d¼1

P T�N � t0jT�N4 t, yftgN ,XftgN , u
ðd Þ
N

� �
P T�N � tjT�N 4 t, yftgN ,XftgN , u

ðd Þ
N

� �
¼

1

D

XD
d¼1

exp �

Z t0

t

h
ðd Þ
N t�ju

ðd Þ
N

� �
dt�

� 	
Suppose that subject N has not experienced the event of interest by time t0, then the outcome histories are

updated to yft
0g

N . We can dynamically update the posterior distribution to pðuNjT
�
N 4 t0, yft

0g

N , hÞ, draw new samples,
and obtain the updated predictions.

It is essential to assess the performance of the proposed predictive measures. Information criteria, such as
deviance information criterion (DIC), can be useful to assess the overall predictive ability of the model. Here we
mainly focus on the survival outcome, probability of event-free 
Nðt

0jtÞ, and on how well the model discriminates
between patients who had the event from patients who did not. Such discrimination performance is measured by
the time-dependent receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC; higher
value indicates better discrimination performance). Specifically, for any given cut point c 2 ð0, 1Þ, the time-
dependent sensitivity and specificity are defined as sensitivity: Pð
iðt

0jtÞ4 cjNiðt, t
0Þ ¼ 1,T�i 4 tÞ and specificity:

Pð
iðt
0jtÞ � cjNiðt, t

0Þ ¼ 0,T�i 4 tÞ, respectively, where Niðt, t
0Þ ¼ Iðt5T�i � t0Þ indicating whether there is an

observed event or not for subject i during the time interval ðt, t0�. In the absence of censoring, sensitivity and
specificity can be simply estimated from the empirical distribution of the predicted risk. To accommodate
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censoring time, Li et al.36 proposed a kernel weighting method to estimate the time-dependent ROC curve
nonparametrically and a closed-form formula to calculate ROC. Consistent estimation of the time-dependent
sensitivity and specificity can be achieved by weighting the patients by their conditional probabilities of disease
onset prior to the time horizon, given the data. This method produces unbiased and efficient estimators and is less
sensitive to the selection of kernel bandwidth as compared with Heagerty et al.37

Moreover, we also assess our model’s performance in calibration, i.e. the agreement between the predicted and
true risks. We use the dynamic expected Brier score (BS) for joint models, which is an extension from the BS
developed in the survival model.38,39 The dynamic expected BS is defined as E½ðDðt0jtÞ � 
ðt0jtÞÞ2�, where the
observed failure status Dðt0jtÞ equals to 1 if the subject experiences the terminal event within the time interval
ðt, t0� and 0 if the subject is event free until t0. An estimator of BS is

cBSð00t0jt00Þ ¼ 1

Nt

XNt

i¼1

Ĝið
00t0jt00Þ Dið

00t0jt00Þ � 
iðt
0jtÞ


 �2
where Nt is the number of subjects at risk at time t, and the weight Ĝið

00t0jt00Þ ¼ Iðti 4 t0Þ

Ŝ0ðt0Þ=Ŝ0ðtÞ
þ

Iðt5 ti�t
0Þ�i

Ŝ0ðtiÞ=Ŝ0ðtÞ
is to account for

censoring with Ŝ0 denoting the Kaplan–Meier estimate.39 In general, BS ¼ 0 indicates perfect prediction and

BS ¼ 0:25 means no better than a random guess.

3.4 Implementation using software

An advantage of the proposed Bayesian FJM is that its implementation and extension can be done via available
softwares and the sample Stan code. The first step is to conduct functional principal component analysis (FPCA)
for functional predictors and estimate the FPC eigenfunctions and scores, by using either fpca.sc function in the
refund packages40 in R or fpca.mle and fpca.score functions in the FPCA package41 in R. In the second step, the
cubic B-spline basis functions can be evaluated over the discretized domain S using the bs function in the package
spline in R. In the third step, the FPC scores obtained from FPCA are used as scalar covariates in the joint model
and the parameters can be estimated using the sample Stan code. For prediction, the samples of the random effect
vector uN can be drawn from its posterior distribution using the arms function in the HI package in R. The future
survival probability can then be calculated based on the samples. Finally, assessment of the predictive performance
based on time-dependent ROC can be achieved using the tdROC package in R.

4 Application to the ADNI study

We apply the proposed Bayesian FJM to the motivating ADNI-1 study. We include the following variables as
scalar covariates: baseline age (bAge, mean: 74.4, SD: 7.3, range 55.1–89.3), gender (gender, 36.1% female), years
of education (Edu, mean: 15.6, SD: 3.0, range 4–20), and presence of at least one apolipoprotein E allele
(APOE� "4, 56%), given their potential effects on AD progression.25,26,42 To utilize the brain imaging
information, we include baseline hippocampal volume (bHV) as a scalar covariate and the baseline
hippocampal surface based on HRD as a functional predictor. We follow the procedure in Section 2 to convert
the 3D HRD to a 1D domain denoted by S. In an exploratory analysis of the ADNI data, we plot the lowess curve
of the longitudinal outcome ADAS-Cog 11 against each scalar covariate and there is no strong nonlinearity in
these curves. Hence, we include linear terms of these covariates, and avoid using splines to have easy interpretation
and less computational burden.

The first model we consider is the regular joint model (refer to as model JM), which incorporates variable bHV
in both longitudinal and survival submodels. Additionally, we consider three FJMs, i.e. model FJM1 that includes
HRD only in the longitudinal submodel, model FJM2 that includes HRD only in the survival submodel, and
model FJM3 that includes HRD in both submodels as

ADAS� CogiðtijÞ ¼ miðtijÞ þ "ij

miðtijÞ ¼ �0 þ �1tij þ �2bAgei þ �3bHVi þ

Z
S

HRDiðsÞB
ðxÞðsÞdsþ ui1

hiðtÞ ¼ h0ðtÞ expf�1genderi þ �2bAgei þ �3Edui þ �4APOE� "4

þ �5bHVi þ

Z
S

HRDiðsÞB
ðwÞðsÞdsþ �miðtÞg
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We perform FPCA onHRD and select the first 20 FPCs, along with their FPC scores. We expand the coefficient
functions BðxÞðsÞ and BðwÞðsÞ using the same cubic B-spline basis functions wðsÞðxÞ ¼ wðsÞðwÞ with KB¼ 20. Baseline
hazard function h0ðtÞ is approximated by a piecewise constant function. Specifically, the observed survival time is
divided into M¼ 7 intervals by every 1=Mth quantiles. We have also explored other selections of M and obtained
very similar results.

We compare the four candidate models by assessing their predictive performance, manifested by the time-
dependent AUCs, at different time points over the follow-up period. To avoid overestimation of the prediction, we
conduct a 10-fold cross validation. Specifically, the total sample of patients is randomly splitted into 10 subgroups
of about equal size. The analysis is repeated 10 times with one subset being set aside as the validation dataset and
the remaining nine subsets being used as the training dataset. Parameters of the joint model are estimated from the
training dataset and applied to the validation dataset. The conditional event-free probability corresponding to
the time frame ðt, tþ�t� is predicted for each patient in the validation datasets as described in Section 3.3. Because
the ADNI patients were reassessed approximately every half year, we select t at 1, 1.5, and 2 years, and �t as 0.5
and 1 years for analysis. Then the time-dependent AUCs and BSs are calculated based on the predicted
probabilities of all patients.

Table 1 displays the time-dependent AUCs and dynamic expected BSs from the four candidate models. Model
FJM2 and FJM3 have notably larger AUCs and smaller BSs than models JM and FJM1 for most of combinations
of t and �t. This suggests that including functional predictor HRD in the survival submodel, in addition to scalar
predictor hippocampal volume, improves the capability of the joint model in predicting risk of AD diagnosis. We
also notice that FJM3 has a smaller DIC than FJM2 (12063 compares to 12097), which indicates that HRD is an
important functional predictor for the cognitive functions manifested by variable ADAS-Cog 11 among the MIC
patients. These results suggest that including HRD in the longitudinal submodel may further improve the overall
predictive ability of the FJM model. Hence, we select FJM3 as the final model because it has a competitive good
discrimination capability and a smaller DIC value.

Parameter estimates from model FJM3 using whole dataset are presented in Table 2, while the estimated vector
of coefficients bBðxÞ and bBðwÞ (for a vector of 20 FPC scores n

ðxÞ
i as in models (3) and (4)) are presented in Web

Tables 1 and 2. In the longitudinal submodel, the ADAS-Cog 11 score increases (deteriorates) as time progresses,
i.e. an average increase of 0.428 unit (95% CI: [0.338–0.521]) per year for MCI patients. Larger hippocampal
volume at baseline (bHV) is associated with lower (better) ADAS-Cog 11 scores. In the survival submodel, the
presence of APOE-"4 allele(s) increases the hazard of AD diagnosis by 70% (expð0:533Þ � 1, 95% CI: [26%–
107%]), which is consistent with the literature.43 Older age at baseline is associated with lower risk of AD
diagnosis. The hippocampal volume (bHV) is no longer significant after including the functional predictor
HRD in the survival submodel. Furthermore, larger ADAS-Cog 11 score increases the risk of AD diagnosis,
i.e. one unit increase in ADAS-Cog 11 score increases the hazard of AD diagnosis by 14.3% (expð0:134Þ � 1, 95%
CI: [8%–19%]).

The coefficient function of BðxÞðsÞ for HRD in the longitudinal submodel is estimated via B̂ðxÞðsÞ ¼P20
l¼1 B̂

ðxÞ
l  

ðxÞ
l ðsÞ, and BðwÞðsÞ in the survival submodel can be estimated in the same way. For visualization

purpose, we map B̂ðxÞðsÞ and B̂ðwÞðsÞ back to the corresponding vertex on the hippocampal surfaces (Figure 2).
Due to the difficulty of displaying a 3D object on paper, Figure 2 only displays two views (from top and bottom) of
left and right hippocampal surfaces. Panel (a) displays a schematic representation of the hippocampal subfields,
defined by Apostolova et al.,44 on the hippocampal surface template. Panel (b) displays the coefficient function

Table 1. AUCs and BSs by four candidate models in the ADNI study.

�t t

JM FJM1 FJM2 FJM3

AUC BS AUC BS AUC BS AUC BS

0.5 1 0.818 0.086 0.818 0.086 0.815 0.084 0.814 0.084

1.5 0.728 0.118 0.729 0.118 0.755 0.112 0.778 0.109

2 0.825 0.103 0.831 0.102 0.877 0.087 0.875 0.086

1 1 0.784 0.150 0.785 0.150 0.793 0.145 0.808 0.142

1.5 0.757 0.171 0.762 0.170 0.812 0.150 0.823 0.146

2 0.741 0.142 0.746 0.139 0.789 0.129 0.792 0.128

AUC: Area under the ROC curve; BS: Brier score; ADNI: Alzheimer’s Disease Neuroimaging Initiative; JM: joint model;

FJM: functional joint model.

Li and Luo 9



B̂ðxÞðsÞ of the functional predictor HRD in the longitudinal submodel. Blue colors denote negative values of B̂ðxÞðsÞ
in the regions. It suggests that the decrease of HRD (i.e. hippocampal atrophy) in the blue regions is associated
with increasing ADAS-Cog 11 score and deteriorating cognitive functions. Panel (c) displays the coefficient
function B̂ðwÞðsÞ of HRD in the survival submodel. The negative values of B̂ðwÞðsÞ in the blue region indicate

Table 2. ADNI data analysis results from model FJM3.

Parameters Mean SE 2.5% 97.5%

For longitudinal outcome

ADAS-Cog 11 Time (years) 0.428 0.045 0.338 0.521

bAge –0.364 0.260 –0.885 0.156

bHV (mm3) –1.617 0.295 –2.201 –1.051

For survival process

MCI to AD Female –0.088 0.173 –0.397 0.270

bAge –0.283 0.042 –0.423 –0.109

Edu (years) 0.028 0.016 –0.002 0.062

APOE-" 0.533 0.125 0.239 0.728

bHV (mm3) 0.056 0.114 –0.185 0.276

� 0.134 0.022 0.079 0.177

ADNI: Alzheimer’s Disease Neuroimaging Initiative; FJM: functional joint model; SE: standard error; ADAS-Cog:

Alzheimer Disease Assessment Scale-Cognitive; bAge: baseline age; bHV: baseline hippocampal volume; MCI: mild

cognitive impairment; AD: Alzheimer’s disease; Edu: education.

Figure 2. (a) Hippocampal subfields mapped onto the hippocampal surfaces; (b) the estimated coefficient function B̂ðxÞðsÞ from the

longitudinal submodel; and (c) the estimated coefficient function B̂ðwÞðsÞ from the survival submodel, mapped onto the hippocampal surfaces.

10 Statistical Methods in Medical Research 0(0)



that the thinner of the area, the higher of the risk of progressing from MCI to AD. Most blue regions in Panels (b)
and (c) are located in the CA1 subfield and subiculum (Sub) subfield displayed in Panel (a), suggesting that
regional radial atrophy in these subfields may be a good predictor of AD progression among MCI patients.

To illustrate the personalized dynamic predictions, we select two target patients as validation data, and predict
their future health outcome and event-free probability based on FJM3 estimates using the remaining data as
training set. Patient A has a baseline age of 73, no APOE-", as compared with a more severe Patient B, 69 years old
at baseline, and with APOE-". Figure 3 demonstrates how the predicted ADAS-Cog 11 scores are updated over
time for the two patients. From left to right on Figure 3, by using more follow-up data, predictions are closer to
the true observed values and the 95% uncertainty band is narrower. It also suggests that Patient A (upper panels)
has lower and more stable predicted ADAS-Cog 11 scores (better cognitive function) than patient B (lower
panels). Figure 4 displays the predicted probability of being free of AD diagnosis. For Patient A, the event-free
probability curve does not show large change because Patient A’s predicted ADAS-Cog 11 scores are relatively
low. In comparison, Patient B has higher predicted ADAS-Cog 11 scores and worse cognitive function, and thus
has considerably drop in the event-free probability. This suggests that Patient B has a higher risk of AD diagnosis
and should be monitored frequently.

5 Simulation study

In this section, we conduct a simulation study to evaluate the proposed Bayesian FJM models, and investigate the
predictive and calibration performance of the survival probability using the FJM models. We generate 200
datasets with sample size I¼ 700 subjects and each subject has Ji¼ 5 measurements at time 0, 3, 6, 9, and 12.
The simulated data structure is similar to the motivating ADNI study, and we include one functional predictor in
both longitudinal and survival submodels. The longitudinal submodel is

yiðtijÞ ¼ miðtijÞ þ "ij

miðtijÞ ¼ �0 þ �1tij þ

Z
S

g
ðxÞ
i ðsÞB

ðxÞðsÞdsþ ui, s 2 ½0, 1� ¼ S

where j ¼ 1, . . . , Ji, "ij � Nð0, �2" ¼ 1Þ, and ui � Nð0, �2u ¼ 2Þ. The time-invariant functional predictor is defined on

a 1D domain S ¼ ½0, 1� as g
ðxÞ
i ðsÞ ¼ di1 þ di2sþ

P10
k¼1 f�is1 � sinð2
ksÞ þ �is2 � cosð2
ksÞg, where di1 � Uð0, 5Þ,

di2 � Nð1, 0:2Þ, and �is1, �is2 � Nð0, 1=k2Þ. It is observed on a discrete grid at location s ¼ c=100, where

c ¼ 0, . . . , 100. The observed functional predictor g
ðx0Þ
i ðsÞ ¼ g

ðxÞ
i ðsÞ þ �iðsÞ, where the measurement errors

Figure 3. Predicted ADAS-Cog 11 for Patient A (upper panels) and Patient B (lower panels). Solid line is predicted longitudinal

trajectories. Dashed lines construct a 95% pointwise uncertainty band. The dotted vertical line represents the time of prediction t.

ADAS-Cog: Alzheimer Disease Assessment Scale-Cognitive.
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�iðsÞ � Nð0, 0:1Þ across s. The coefficient �0 ¼ 1:35, �1 ¼ 7:0, and coefficient function BðxÞðsÞ ¼ �1:5� sinð2
sÞ�
cosð2
sÞ. The survival submodel is

hiðtÞ ¼ h0ðtÞ expf�1w1 þ

Z
S

g
ðwÞ
i ðsÞB

ðwÞðsÞdsþ �miðtÞg, s 2 ½0, 1� ¼ S

where the baseline hazard function h0ðtÞ ¼ expð�10Þ, w1 is simulated from Bernoulli distribution with probability
being 0.5, and �1 ¼ �2:5. We have functional predictor g

ðwÞ
i ðsÞ ¼ g

ðxÞ
i ðsÞ and the observed functional predictor

g
ðw0Þ
i ðsÞ is generated in a similar fashion as g

ðx0Þ
i ðsÞ. The coefficient function BðwÞðsÞ ¼ 1

2:5 �ðs�0:6
0:22
Þ, where �ð�Þ is the

standard Normal density function. Censoring time is independently simulated from a uniform distribution to
achieve a censoring rate about 30%. Due to censoring, each subject has an average of four repeated measurements.
We perform FPCA to the simulated functional predictors g

ðx0Þ
i ðsÞ and g

ðw0Þ
i ðsÞ, and choose the first 10 FPCs. The

coefficient functions BðxÞðsÞ and BðwÞðsÞ are expanded by cubic B-spline basis with KB¼ 10.
For each of the 200 simulated datasets (denoted by subscript r), we randomly select 500 subjects as the training

dataset and set aside the remaining 200 subjects as the validation dataset for prediction. The ability to estimate the
true coefficient is assessed by the average mean squared error (AMSE). For the coefficient functions
B̂ð�Þ, AMSEðB̂ð:ÞÞ ¼ 1

200

P200
r¼1 ½B̂rðsÞ � BðsÞ�2, and for the other parameters, AMSEð�̂1Þ ¼

1
200

P200
r¼1 ð�̂1r � �1Þ

2.
Table 3 presents the AMSE, in addition to bias (the average of the posterior means minus the true values),
standard error (SE, the square root of the average of the variance), standard deviation (SD, the standard
deviation of the posterior mean), and coverage probabilities (CP) of 95% credible intervals. Table 3 suggests
that the proposed Bayesian FJM performs reasonable well with relatively small AMSE values for both coefficient
functions and other parameters, SE being close to SD, and the credible interval coverage probabilities being
reasonably close to 95%.

Figure 5 displays the true coefficient functions BðxÞðsÞ and BðwÞðsÞ (red solid lines) and their estimated curves
(black solid lines), along with the 95% pointwise credible interval (dashed lines). Both panels suggest that the
estimated coefficient functions are reasonably close to the true coefficient functions, with 95% pointwise credible
interval always covering the true functions.

For each testing dataset, we predict subject-specific conditional survival probability 
̂kðt
0jtÞ for each subject at

different time points t and t0 ¼ tþ�t using the MCMC samples from the fitted model and available measurements
up to time t. The predicted time-dependent AUCs are calculated based on the predicted probabilities of all
subjects. The true conditional survival probability 
Nðt

0jtÞ and AUCs are computed using the prespecified
parameter values and the generated random effects. We use the dynamic expected BS cBSðt0jtÞ to assess the bias
between the predicted and true risks. Table 4 presents the time-dependent AUCs and BSs by averaging the results

Figure 4. Predicted event-free probability with 95% pointwise uncertainty band for Patient A (upper panels) and Patient B (lower

panels). The dotted vertical line represents the time of prediction t.
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from 200 simulated datasets. The predict AUCs are only slightly smaller than the true AUCs, suggesting good
prediction performance of the FJM in terms of validation. The small values in BSs indicate the excellent
calibration performance of the FJM.

6 Discussion

The methodology introduced in this article is motivated by many current studies where functional data are
collected. The ADNI is just one example of such studies. However, both theoretical and computational
complexity in modeling functional data restrict researchers to focused on scalar measures, e.g. volumes of a few
brain regions. Without careful analysis of the functional data, pace to understand diseases and population’s health
condition can be dramatically slowed down. Moreover, some high dimensional data, such as genetic variant

Table 3. Parameter estimation in the simulation study.

Bias AMSE SE SD CP

For longitudinal data

�1 ¼ 7:00 <0.001 <0.001 0.006 0.007 0.920

BðxÞðsÞ 0.014

�2
" ¼ 1 0.006 0.002 0.038 0.040 0.925

�2
u ¼ 2 <0.001 0.023 0.144 0.152 0.940

For survival data

�1¼ –2.5 –0.059 0.042 0.198 0.197 0.955

� ¼ 1:2 0.021 0.005 0.068 0.069 0.930

BðwÞðsÞ 0.003

AMSE: average mean squared error; SE: standard error; SD: standard deviation; CP: coverage probability.

Figure 5. The FJM’s estimates of coefficient functions in simulation study. The true coefficient functions (red solid line) BðxÞðsÞ (left

panel) and BðwÞðsÞ (right panel) and their estimates (black solid line), along with 95% pointwise credible interval (dashed lines).

FJM: functional joint model.
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profiles defined along chromosomes or genomic regions, are commonly treated as functional data. To this end,
functional data analysis methods are becoming increasingly important.

In this article, we first propose a Bayesian FJM to account for functional predictors in both longitudinal and
survival submodels within the framework of joint modeling. We use the FPCA to approximate the functional
predictor, and expand its corresponding coefficient function using penalized B-spline approach. We then develop
the process of making personalized dynamic prediction of future outcome trajectories and risks of event using both
scalar and functional predictors. Simulation indicates that the proposed Bayesian FJM yields accurate inference
and prediction. Being applied to the motivating ADNI study, the FJM can efficiently estimate the association
between the trajectory of cognitive functions measured by the ADAS-Cog 11 score and time to AD diagnosis,
while accounting for the functional predictor (HRD) and other scalar covariates. We have identified the regional
radial atrophy in the CA1 subfield and the subiculum subfield as a good predictor of AD progression among
patients with MCI. More importantly, the proposed Bayesian FJM can utilize the functional predictors to make
correct predictions for new subjects. The inclusion of functional predictor HRD into both the longitudinal and
survival submodels improves overall model fitting and predictive performance. When new measurements are
available, the predictions can be updated with improved accuracy and efficiency. Thus, earlier diagnosis can be
made to subjects with high predicted risk of deterioration, and intervention can be planned in a timely manner to
delaying the manifestation of AD in prodromal AD patients. In addition, although we only use HRD in ADNI
data analysis, the proposed Bayesian FJM can readily include multiple brain regions, and even genotype profiles,
as functional predictors to provide even precise prediction of Alzheimer’s disease progression.

There are some limitations we will address in the future. First, we exclude from analysis the subjects (45 out of
400) with missing data in baseline covariates of interest. Most of these subjects either do not have baseline image
data measured or do not have image data in the archive due to the technical difficulty in image data collection and
storage. Although the well-established imputation methods, e.g. multiple imputation, can be used for missing
data in scalar predictors, it is challenging in both statistical theory and computation to handle missing functional
data. We will extend our Bayesian FJM to account for missing data in both scalar and functional covariates in the
future. Second, we use time-invariant functional data as predictor in this article. It would be of scientific interest to
extend the proposed Bayesian FJM to accommodate longitudinal functional data. We can decompose the
longitudinal functional predictor using longitudinal functional principal component analysis (LFPCA)45 to
account for its longitudinal data structure. Alternatively, we can treat the longitudinal functional data as a
functional response variable in the longitudinal submodel (function-on-scalar regression problem) and it can be
incorporated in the survival submodel as a time-dependent functional predictor. This model can investigate how
the longitudinal functional variable directly impacts the risk for an event.

Moreover, in model (2), we implicitly assume that the risk for an event at time t depends on the unobserved true
value of the longitudinal outcome at the same time point. We can investigate different functional forms for
the association structure between the longitudinal outcome and the risk for an event.46,47 For example, both
the unobserved true value of miðtijÞ in model (1) and its time-dependent slope m0iðtijÞ or even its cumulative
effect

R t
0 miðsÞds can be included in model (2). The proposed Bayesian FJM can readily accommodate various

functional forms with minor modification to the sample codes. Furthermore, the Bayesian procedure we develop is
shown to have good inferential properties in simulation studies. As sample size and the number of parameters
associated with B-spline grow, computation time may increase dramatically. To this end, paralleling MCMC48 and
variational approximations49 may address the computational concerns and result in good estimations of model
components. We would like to investigate these issues in our future research.

Table 4. AUCs and BSs for the simulation study.

�t t True AUC�t
t Predicted AUC�t

t
bBSðt0jtÞ

3 3 0.856 0.853 0.015

6 0.948 0.941 0.024

9 0.960 0.957 0.035

6 3 0.935 0.929 0.033

6 0.959 0.957 0.044

9 0.970 0.959 0.047

AUC: Area under the ROC curve; BS: Brier score.

14 Statistical Methods in Medical Research 0(0)



Acknowledgements

The authors acknowledge the Texas Advanced Computing Center (TACC) for providing high-performing computing

resources. Data used in preparation of this article were obtained from the ADNI database (adni.loni.ucla.edu). As such, the

investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not

participate in analysis or writing of this article. A complete listing of ADNI investigators can be found at: http://

adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article:

Sheng Luo’s research was supported by the National Institute of Neurological Disorders and Stroke under Award Number

R01NS091307 and 5U01NS043127.

References

1. Faucett CL and Thomas DC. Simultaneously modelling censored survival data and repeatedly measured covariates: a

Gibbs sampling approach. Stat Med 1996; 15: 1663–1685.
2. Wulfsohn MS and Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics 1997; 53:

330–339.

3. Rizopoulos D. Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data.

Biometrics 2011; 67: 819–829.
4. Taylor JM, Park Y, Ankerst DP, et al. Real-time individual predictions of prostate cancer recurrence using joint models.

Biometrics 2013; 69: 206–213.
5. Ramsay JO and Dalzell CJ. Some tools for functional data analysis. J Roy Stat Soc Ser B (Methodol) 1991; 53: 539–572.
6. Wang JL, Chiou JM and Müller HG. Functional data analysis. Annu Rev Stat Appl 2016; 3: 257–295.

7. Morris JS. Functional regression. Annu Rev Stat Appl 2015; 2: 321–359.
8. Cardot H, Ferraty F and Sarda P. Spline estimators for the functional linear model. Stat Sin 2003; 13: 571–591.
9. James GM. Generalized linear models with functional predictors. J Roy Stat Soc: Ser B (Stat Methodol) 2002; 64:

411–432.
10. Müller HG and Stadtmüller U. Generalized functional linear models. Ann Stat 2005; 33: 774–805.
11. Reiss PT and Ogden RT. Functional principal component regression and functional partial least squares. J Am Stat Assoc

2007; 102: 984–996.
12. James GM, Wang J and Zhu J. Functional linear regression that’s interpretable. Ann Stat 2009; 37: 2083–2108.
13. Goldsmith J, Bobb J, Crainiceanu CM, et al. Penalized functional regression. J Comput Graph Stat 2012; 20: 830–851.
14. Goldsmith J, Crainiceanu CM, Caffo B, et al. Longitudinal penalized functional regression for cognitive outcomes on

neuronal tract measurements. J Roy Stat Soc: Ser C (Appl Stat) 2012; 61: 453–469.
15. Gertheiss J, Goldsmith J, Crainiceanu C, et al. Longitudinal scalar-on-functions regression with application to

tractography data. Biostatistics 2013; 14: 447–461.
16. Gellar JE, Colantuoni E, Needham DM, et al. Cox regression models with functional covariates for survival data. Stat

Model 2015; 15: 256–278.

17. Lee E, Zhu H, Kong D, et al. BFLCRM: A Bayesian functional linear Cox regression model for predicting time to

conversion to Alzheimer’s disease. Ann Appl Stat 2015; 9: 2153–2178.
18. Weiner MW, Veitch DP, Aisen PS, et al. 2014 Update of the Alzheimer’s Disease Neuroimaging Initiative: A review of

papers published since its inception. Alzheimers Dement 2015; 11: e1–e120.
19. Li K, Chan W, Doody RS, et al. Prediction of conversion to Alzheimers disease with longitudinal measures and time-to-

event data. J Alzheimers Dis 2017; 58: 361–371.

20. Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 1979; 74: 829–836.
21. Diggle P and Kenward MG. Informative drop-out in longitudinal data analysis. J Roy Stat Soc Ser C (Appl Stat) 1994; 43:

49–93.

22. Lo RY, Hubbard AE, Shaw LM, et al. Longitudinal change of biomarkers in cognitive decline. Archiv Neurol 2011; 68:

1257–1266.
23. Zhang D, Shen D, Initiative ADN, et al. Predicting future clinical changes of MCI patients using longitudinal and

multimodal biomarkers. PLOS One 2012; 7: e33182.

Li and Luo 15



24. Du AT. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and
Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2001; 71: 441–447.

25. Cui Y, Liu B, Luo S, et al. Identification of conversion from mild cognitive impairment to Alzheimer’s disease using

multivariate predictors. PLOS One 2011; 6: e21896.
26. Li S, Okonkwo O, Albert M, et al. Variation in variables that predict progression fromMCI to AD dementia over duration

of follow-up. Am J Alzheimers Dis 2013; 2: 12–28.
27. Apostolova LG, Mosconi L, Thompson PM, et al. Subregional hippocampal atrophy predicts Alzheimer’s dementia in the

cognitively normal. Neurobiol Aging 2010; 31: 1077–1088.
28. Qiu A, Fennema-Notestine C, Dale AM, et al. Regional shape abnormalities in mild cognitive impairment and Alzheimer’s

disease. NeuroImage 2009; 45: 656–661.

29. Ruppert D. Selecting the number of knots for penalized splines. J Comput Graph Stat 2002; 11: 735–757.
30. Staniswalis JG and Lee JJ. Nonparametric regression analysis of longitudinal data. J Am Stat Assoc 1998; 93: 1403–1418.
31. Yao F, Müller HG, Clifford AJ, et al. Shrinkage estimation for functional principal component scores with application to

the population kinetics of plasma folate. Biometrics 2003; 59: 676–685.
32. Stefan Lang AB. Bayesian P-splines. J Comput Graph Stat 2004; 13: 183–212.
33. Hoffman MD and Gelman A. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo.

J Mach Learn Res 2014; 15: 1593–1623.
34. Gelman A, Carlin JB, Stern HS, et al. Bayesian data analysis. Boca Raton, FL: CRC Press, 2013.
35. Gilks WR, Best NG and Tan KKC. Adaptive rejection Metropolis sampling within Gibbs sampling. J Roy Stat Soc Ser C

(Appl Stat) 1995; 44: 455–472.

36. Li L, Greene T and Hu B. A simple method to estimate the time-dependent receiver operating characteristic curve and the
area under the curve with right censored data. Stat Methods Med Res 2016; 0: 0962280216680239.

37. Heagerty PJ, Lumley T and Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker.

Biometrics 2000; 56: 337–344.
38. Blanche P, Proust-Lima C, Loubre L, et al. Quantifying and comparing dynamic predictive accuracy of joint models for

longitudinal marker and time-to-event in presence of censoring and competing risks. Biometrics 2015; 71: 102–113.

39. Sne M, Taylor JMG, Dignam JJ, et al. Individualized dynamic prediction of prostate cancer recurrence with and without
the initiation of a second treatment: development and validation. Stat Methods Med Res 2016; 25: 2972–2991.

40. Crainiceanu CM, Reiss PT, Goldsmith J, et al. Refund: Regression with functional data, http://CRAN.R-project.org/
package=refund, r package version 0.1-6 (2013).

41. Peng J and Paul D. A geometric approach to maximum likelihood estimation of the functional principal components from
sparse longitudinal data. J Comput Graph Stat 2009; 18: 995–1015.

42. Risacher SL, Saykin AJ, Wes JD, et al. Baseline MRI predictors of conversion from MCI to probable AD in the ADNI

cohort. Curr Alzheimer Res 2009; 6: 347–361.
43. Corder E, Saunders A, Strittmatter W, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease

in late onset families. Science 1993; 261: 921–923.

44. Apostolova LG, Dutton RA, Dinov ID, et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by
hippocampal atrophy maps. Archiv Neurol 2006; 63: 693–699.

45. Greven S, Crainiceanu C, Caffo B, et al. Longitudinal functional principal component analysis. Electron J Stat 2010; 4:

1022–1054.
46. Rizopoulos D, Hatfield LA, Carlin BP, et al. Combining dynamic predictions from joint models for longitudinal and time-

to-event data using Bayesian model averaging. J Am Stat Assoc 2014; 109: 1385–1397.
47. Yang L, Yu M and Gao S. Prediction of coronary artery disease risk based on multiple longitudinal biomarkers. Stat Med

2016; 35: 1299–1314.
48. Wang X, Guo F, Heller KA, et al. Parallelizing MCMC with random partition trees. In: Cortes C, Lawrence ND and Lee

DD (eds) Advances in neural information processing systems 28. Red Hook, NY: Curran Associates, Inc., 2015, pp.451–459.

49. Ormerod JT and Wand MP. Explaining variational approximations. Am Stat 2010; 64: 140–153.

16 Statistical Methods in Medical Research 0(0)

http://CRAN.R-project.org/package=refund
http://CRAN.R-project.org/package=refund

